
Decentralized Average Environmental Temperature
Estimation

Mario Coutino
MSc. Electrical Engineering

Delft University of Technology
Std. Num: 4410475

M.A.Coutinomingue@student.tudelft.nl

Kris Shrishak S
MSc. Electrical Engineering

Delft University of Technology
Std. Num: 4411811

K.S.Sridaran@student.tudelft.nl

I. INTRODUCTION

In this project, a simulation of a sensor network for a plant
with dimensions 30m×60m is implemented. The sensors are
placed on the ceiling and are used to monitor the environ-
mental temperature. The sensors have a transmission radius
of 3m and communicate through wireless data transmission.
The computation of the average temperature and transmission
in the network is performed in a decentralized manner. Two
different methods, based on dual decomposition and constraint
enforcement, are presented and compared. Problems as noisy
measurements and package losses are also simulated and the
performance of the methods under different update schemes
(synchronous and asynchronous) is reported.

II. DESIGN OVERVIEW

As the problem statement does not put any constraints on
the energy consumption or actual sensing range (sensitivity
of the sensor), we did not delve into it. The most important
criterion considered in designing the network was maximum
coverage (with a considerable amount of sensors). We have
considered the communication range to be 3m and assumed
the sensing range as the half of the communication range.
Maximum coverage is expressed in terms of the number of
sensor nodes[1]. It is expressed by the following equation:

NCoveredp =

{
1 d(si,mp) ≤ Rs
0 otherwise

where
Rs is the sensing range.
d(si,mp) is the Euclidean distance between the sensing node
i and the monitoring point p.

In addition, we make sure that every monitoring location
has only one sensor node. We designed the sensor network
in a rectangular grid with 231 sensors. Each sensor is at a
distance of 3m from another. We have 11 rows and 21 columns
of sensors. In this way every part of the plant is covered.
Each sensor in the network is identified by its ID and its
position in the grid. To keep it simple, a sensor at position
(i, j) communicates with its neighbors along row i and column
j. They do not communicate with sensors along the diagonals.

Each of the four corner sensors have two neighbors, the edge
sensors have three neighbors while other sensors have four
neighbors. The sensors store the ID of its neighbors in order
to communicate.

III. ADMM FOR DECENTRALIZED CONSENSUS
OPTIMIZATION

As no fusion center is available in our sensor network
G(V,E), the decentralized ADMM is implemented as first
solution to the average estimation problem.

Lets define the optimization problem to be solved as

minimize
x

N∑
i=1

1
2 (xi − ai)

2

s.t xi − zij = 0, xj − zij = 0, ∀(i, j) ∈ E

After the Augmented Lagrangian of the previous problem
is formulated, it is clearly observed that by introducing the
decouple variables zij the minimizing process can now be
solved in a distributed way.

Lρ(x, z, v) =
∑
i∈V

1

2
(xi − ai)2 +

∑
(i,j)∈E

(vTij(xi − zij)

+
ρ

2
‖xi − zij‖22 + vTji(xj − zij) +

ρ

2
‖xj − zij‖22)

Now the decentralized average estimation problem is
reduced to find the x∗i , z∗ij , vij and vji that maximize the
Augmented Lagrangian, which can be solve through an
iterative method that only requires computations inside each
node and transmission of messages between neighbors.

IV. GRADIENT BASED AVERAGE APPROXIMATION (GBA)

Approaching the consensus problem as an optimization
problem, it is possible to use a similar idea as the Augmented
Lagrangian in ADMM case to devise a method based in a
relaxed way to enforce the desired constraints.

Assuming a probability distribution p(t) over the graph
G(V,E) defined by our mesh of sensors, we want to find t∗
that maximizes the given probability distribution and at the
same time be a proper estimate of the average temperature



given the measurements in each node. In addition, the
decentralized property must hold, otherwise the idea of a
system without central unit will not be possible.

Let the argument of our exponential function for the prob-
ability distribution be

f(t) = −1

2

∑
i∈V

(ai − ti)2 −
1

2

∑
i∈V

∑
j∈N (i)

(ti − tj)2

where
ai is the measurement at node i
ti is the average temperature estimate at node i
N (i) neighboring nodes of node i

From the previous equation can be seen that the first term
is exactly the same as the proposed cost for ADMM case. The
difference comes when the constraints are enforced. Instead
of using the Augmented Lagrangian and work under the dual
problem, a straight forward function which tries to account
for differences in the estimate temperature at the edges is used.

After casting the problem as a new unconstrained one,
some advantages can be observed. The separability of the cost
is conserved. Less number of variables have to be computed
in each iterations and hence smaller packages.

Unfortunately, the algorithm now makes a trade off
between convergence speed and convergence tolerance (not
all ti reach the same value). This trade off can be accounted
by adding a penalizing variable γ to the first term, which
is responsible for differences between nodes estimates. As
γ → 0 the method will find an optimal t∗ with equal entries,
which probably will not be exactly the true mean.

The final implementation of GBA uses a gradient descent
approach with fix step size ρ (typically in the range
[0.2−0.4] and a tunable cost γ (of the order of 10−6). During
experimental trials, it was observed that the selection of this
parameters is fairly independent of the mesh size.

V. RESULTS

A comparison under different operation conditions and
update schemes is made between ADMM and GBA. In
the experimental setup, under the proposed sensor network
G(V,E), conditions of transmission failures and noise in the
measurements in each iteration is simulated.

The general stop criteria for both methods, in both updating
schemes, was selected as

εk = (T − tk)2/|V | < 10−2

where
T is the true mean of the temperature measurements
t is the k estimate of the network

|V | is the number of nodes in the graph

If this criteria is not achieved in any given realization, the
maximum number of iterations allowed for the synchronous
case was set at 500 and for the asynchronous case at 105.

The simulations consist of 100 realizations with each
node (no restriction for their values) initialized to random
temperatures. The average and worst case results obtained are
shown in the tables below.

A. ADMM Performance

Synchronous Scheme

Channel Conditions Num. Iterations/
Worst Case

Num. Transmissions/
Worst Case

Ideal 59/145 50,740/124,700
Noise 5% 61/159 52,460/136,740

Packet Loss 30% 63/166 54,180/142,760
Packet Loss 10%

+ Noise 10% 58/161 49,880/138,460

TABLE I: GBA Simulation Results. Mean and worst case
values

Fig. 1: Synchronous ADMM Simulation Output

Asynchronous Scheme

Channel Conditions Num. Iterations/
Worst Case

Num. Transmissions/
Worst Case

Ideal 86,436/10e4 643,670/745,026
Noise 5% -/- 744,570/744,842

Packet Loss 30% 89,907/10e4 669,530/744,803
Packet Loss 10%

+ Noise 10% -/- 744,630/745,094

TABLE II: GBA Simulation Results. Mean and worst case
values

Under asynchronous update for the noisy cases, it was not
possible to achieve convergence under the established terms.
However, if the number of iteration is increased or the margin
of error accepted per node is relaxed, ADMM will deliver a
good estimation of the average temperature.



Fig. 2: Asynchronous ADMM Simulation Output

B. GBA Performance

Both updating schemes are simulated using the same
method parameters ρ = 0.4 and γ = 0 (these value for γ and
ρ were found the best after several tests).

Synchronous Scheme

Channel Conditions Num. Iterations/
Worst Case

Num. Transmissions/
Worst Case

Ideal 70/110 60,130/94,490
Noise 5% 72/138 61,848/118542

Packet Loss 30% 140/240 120,260/206,160
Packet Loss 10%

+ Noise 10% 70/141 60,130/121,119

TABLE III: GBA Simulation Results. Mean and worst case
values

Fig. 3: Synchronous GBA Simulation Output

Asynchronous Scheme

Channel Conditions Num. Iterations/
Worst Case

Num. Transmissions/
Worst Case

Ideal 6.3e4/10e4 80,259/372,076
Noise 5% 6.8e4/10e4 102,392/372,119

Packet Loss 30% 8.2e4/10e4 145,300/372,262
Packet Loss 10%

+ Noise 10% 6.8e4/10e4 112,421/372,158

TABLE IV: GBA Simulation Results. Mean and worst case
values

Fig. 4: Asynchronous GBA Simulation Output

VI. CONCLUSION

In this project two approaches to solve the distributed com-
putation of the average temperature of a plant was compared.
Their individual performance was discussed in terms of the
number iterations and number of transmission for the network.
Even though both approaches come from the almost the
same principle, a separable convex optimization problem with
enforced constraints, they show slightly different performance.
Particularly, GBA also shows that even when the design of the
algorithm is meant as a suboptimal solution, its experimental
performance is good and it performs better in the asynchronous
update under noise, which is the closest experimental set up
to a real scenario.
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