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I. INTRODUCTION

In this project a single channel noise reduction (SCNR)
module for a speech enhancement system is designed and
tested. The proposed implementation processed the signal
entirely in the frequency domain, through the Short Time Fast
Fourier Transform (STFFT) which provides a way to treat the
spectrum components independently.
Two power spectra density (PSD) smoothing methods for the
speech signal, one in frequency domain and other in the
cepstrum domain, are compared through objective measures
for predicted intelligibility and speech quality. In addition,
spatial filtering by means of beamforming for a multiple
microphone set up is shortly described and its advantages
presented.
Finally, the result of the implementation of feedback between
the spatial and temporal processing modules is briefly dis-
cussed and some of its benefits are shown.

II. SCNR MODULE DESIGN

The single channel noise reduction (SCNR) system was
developed in Simulink platform. It consists of five main
parts: Analysis/Synthesis, Noise PSD Estimation, Speech PSD
Estimation, Speech PSD Smoothing and Gain. The actual
design diagram block can be seen in Fig. 1. The following
section of this report briefly explains each block to give some
understanding of the design choices.

A. Analysis/Synthesis
These are the starting and ending blocks of the system.

They implement the segmentation, transformation and merging
needed to process the temporal samples in the frequency
domain. Basically, these blocks implement the STFT and its
inverse, which means that the (Inverse) Fast Fourier Transform
(I)(FFT) is performed over a segmented audio signal consisting
of 512 samples ≈ 30ms@16kHz (interval where the signal
can be assumed approximately stationary and speech FFT
coefficients independent [7]), with an overlap of 50% and
scaled with a normalized Hamming window.
The main reason for using Fourier coefficients is due to their
approximately uncorrelated nature. Under the assumptions
of super-Gaussian distributed coefficients [6] and statistical
independence across time and frequency bins, optimal noise
suppression can be achieved.

Finally, the merging is carried out by using the Overlap-add
method [8], which combines successive frames to construct
the processed output audio signal. All these processes were
implemented in Simulink through the built-in blocks provided
by the Signal Processing Toolbox of Matlab.

B. Noise PSD Estimation: MMSE Based

To estimate the noise PSD we make use of the unbiased
MMSE noise PSD estimator based on Speech Presence Prob-
ability (SPP). This estimator arises from the regular MMSE
estimator with the difference of using a soft decision instead
of a hard one.
In section 3 of [2] it is argued that the standard MMSE
estimator can be seen as a VAD-based detector which results
in a hard decision between noisy observation and the estimate
of the spectral noise power. Furthermore it is shown that the
MMSE estimator is biased when the estimated quantities are
used which are not equal to the true values for noise and/or
signal power.
As explained in section 4 of [2] it is possible to replace the
hard decision of the VAD-based detector by a soft decision
SPP with fixed priors. The advantage is that no bias compen-
sation is necessary.
The a posteriori SPP is computed by:
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where we assume that it is equally likely that speech is present
or not, i.e. P(H0) = P(H1) = 0.5.
As a priori SNR we’ve chosen a fixed value which has the
advantage that the noise power estimator can be decoupled
from other steps in the speech enhancement system. Gerkmann
et al in [2] show that the optimal a priori SNR is 15 dB when
a probability of error is given as in [11] and it is assumed that
the true a priori SNR is uniformly distributed between −∞
dB and 20 dB.
Defining Speech Absence Probability as:

P(H0|y) = 1− P(H1|y)

the expression for the MMSE estimator results in:

E(|N |2|y) = P(H0|y)|y|2 + P(H1|y)σ̂2
N



Fig. 1: Single Channel Noise Reduction Module Design

After the noise periodogram is estimated, the noise power
spectral density is obtained via recursive smoothing with
αpow = 0.8:

σ̂2
N (l) = αpowσ̂2

N (l − 1) + (1− αpow)E(|N |2|y(l))

In Fig. 2 the output of the module for a particular frequency
is shown. As seen in the plot, the method is able to follow the
noise PSD without too much delay.

Fig. 2: Output of the MMSE-SPP Noise Estimator

A comparison between the spectograms of the original noise
signal and its estimate is shown in Fig. 3. It is seen that the
overall shape of the spectrogram is maintained within a small
amount of distortion, which leads us to conclude that the noise
is properly estimated.

C. Target Estimate: Wiener Gain

In order to estimate the clean speech FFT coefficients a
simple approach is based on the minimization of the mean
square error (MMSE). For this particular case, the estimator
was constrained to be linear, which results in the frequency

Fig. 3: Spectogram of the Original and Estimated Noise
Signal

domain Wiener filter [9].
The cost function to minimize is given by

Gk = arg min
Gk

E{|Sk −GkYk|2}

which leads to the optimal estimator given by

Ŝk =
σ2
s,k

σ2
s,s + σ2

n,k

Yk

where the subscript k indicates a specific frequency bin of the
FFT.
As the gain G is always real (PSD components are always
positive) it can be seen that the optimal estimator only modifies
the noisy magnitude of the measurement Y, but the noisy phase
is propagated without any modification.

D. Speech PSD Smoothing
Decision Direct (DD)



Ephraim and Malah proposed a decision-directed (DD)
estimator in [16] based on the clean-speech estimate from the
previous time frame. The parameters αdd and ξmin control the
trade-off between noise reduction and distortions of speech
transients in a speech enhancement framework. The decision-
directed approach allows for fast tracking of increasing levels
of the speech power, and results in effective smoothing.

σ̂2
s,k(l) = max(αdd|Ŝk(l − 1)|2+

(1− αdd)
(
|yk(l)|2 − σ2

N,k(l)
)
, ξminσ

2
N,k(l))

The problem of musical noise is observed on using this
method. This is because of the high sensitivity of this approach
to rising spectral amplitudes which may occur in the form of
speech as well as noise. But the negative effect of musical
noise much lower than observed on the usage on maximum
likelihood approach.

Temporal Cepstrum Smoothing (TCS)

Breithaupt et al in [10] proposed, in contrast to DD, to
perform a smoothing of the speech PSD in the cepstrum
domain. They argued that as the lower cepstral coefficients
represent the spectral envelop of the compressed speech,
it is possible to apply a smoothing capable of maintaining
the spectral envelop of the speech signal while suppressing
spectral outlier due to estimation errors. By applying
a quefrency dependent vector gain α, the non-speech
related ceptrum coefficients can be smoothed out while the
voice coefficients are updated faster with the new information.

Our modified version of the proposed algorithm in [10] is
as follows

Wiener Estimate σ̂2
s,k

Ceptral Domain λq = IFFTq{log(max(σ̂2
s,k, σ

2
min))}

Temporal Smoothing λ̄q(l) = αq(λ̄q(l − 1) + (1− αq)λq(l)

As our implementation follows the one from Breithaupt et
al a fixed bias compensation B is used after we return to the
frequency domain

ˆσ2
s,k = Bexp(FFTk{λ̄q})

In addition, the quefrency dependent gain αq is also considered
fixed for all the frames and it is taken as

α[i] =


0.5 i < 4

0.7 4 ≤ i ≤ 20

0.97 i > 20

where i is the index (0 < i ≤ 256) of the array α.

E. Gain Module
Most human beings are capable of hearing sounds in the fre-

quency range 20Hz-20KHz. Human beings are most sensitive
to sounds in the range 3kHz-5KHz. In terms of the loudness,
sounds from 0dB to 130 dB sound pressure level can be heard
by humans. But in the case of a hearing impaired person,
the hearing profile changes. Though it differs from person to

person, typically hearing loss is characterized by increased
threshold of hearing and almost unchanged threshold of pain.
This means that the dynamic range of hearing is reduced.
As the goal of speech enhancement system is to improve the
intelligibility and the pleasantness of sound, its design for
hearing impaired cannot use a constant gain function. Instead
a frequency dependent gain function is used in order to com-
pensate for the reduced dynamic range. Common rationales set
by standardization authorities are used to design the frequency
dependent gain function [15].
These rationales may include gender and language among
others. In order to keep the sounds below the threshold of
pain, a compressor based on standard compression tables is
also used.

Fig. 4: The auditory area of the human ear [15]

III. EVALUATION OF SPEECH ENHANCEMENT SYSTEM

Although listening tests are the ultimate way to validate
an audio system, the high cost and the length of the trials
are the main motivation to look for automatic ways to validate.

For the evaluation of our speech enhancement system three
objective measures are used. Two of them are related to the
distortion and audio quality perceived in the processed signal
and one with the intelligibility of the output speech. In this
section these measures will be briefly described and the result
of the system under these metrics will be discussed. The keen
reader is referred to [5], [12] and [13] for an in depth treatment
of the matter.

SEG-SNR STOI PESQ
Noisy Signal -6.9277 0.5066 1.1592

Wiener -3.8139 0.5165 1.4689
DD -3.9775 0.5223 1.4645
TCS -1.5905 0.5165 1.4689

TABLE I: Results of different objective quality and
intelligibility measures

Segmental SNR (SEG-SNR)

This measure makes a comparison of the waveforms in time
domain, which can lead to a situation in which the result does
not represent properly the SNR of the individual frames. This
measure is defined as

SEG-SNR =
1

L

∑
l∈L

10 log10(
‖sl‖2

‖sl − ŝl‖2
)[dB]



The first column of Table I shows that TCS has the best
performance under this measure even though it is under 0
dB. As mentioned before, this measure does not correlate
very well with actual quality, leading to think that probably
the low SEG-SNR given by the other two methods are by
sign inversion of the time-domain signal or similar effects,
which are imperceptible to us but affect the measure result.

Perceptual Evaluation of Speech Quality (PESQ)

PESQ is a measure to evaluate distortions in the speech
signal. It is reported in [13] that it correlates well with the
perceived quality of the speech. In this project the PESQ
based on the ITU and implemented by C. Loizou [14] is
used.
From the results in Table I it is seen that Wiener Filter, DD
and TCS give similar results, slightly higher values than the
PESQ of the original noisy signal.

Short Time Objective Intelligibility (STOI)

As actual listening tests are expensive, STOI measure
provides a way to predict (objectively) the intelligibility for
the processed speech signal.
STOI filters signal similar as the cochlea, then the silent
regions are removed and finally the temporal envelops are
correlated with the ones from the original speech signal. It
is expected a monotonic relation of the measure with the
average intelligibility [5].

In Table I the STOI for the three methods are slightly higher
than the one from the noisy signal. From the processed signals,
DD has the highest predicted value (≈ 52%), just above the
original STOI of the noisy signal. The other two outputs have
the same STOI increase range ≈ +1%, which makes us doubt
if intelligibility is increased after the noise reduction process.

IV. MULTIPLE MICROPHONES: SPATIAL FILTERING

The possibility of spatially filtering of noisy sources gives a
great advantage in terms of Signal to Interference-Noise Ratio
(SINR) as now the beam can be focused towards the desired
source and null can be oriented towards the interference.
Unfortunately, this increase in SINR does not come without a
cost. In order to be able to perform spatial filtering, more than
one microphone is needed. In addition, higher computational
cost is piled up as most of this methods rely on recursive
estimation of the inverse signal/noise covariance matrix.

A. Microphone Array Manifold
In this project a two microphone system is assumed for

spatial filtering. The elements of the array were selected to
be cardioid microphones spaced at 5mm from each other. The
joint response of the array is given by Fig. 5 for the range of
audible frequencies.

As expected, the shape is still a cardiod, with a null at π
radians. However, for the tested frequencies, the response is

Fig. 5: Microphone array response in azimuthal plane

not uniform anymore. This effect can be seen more clearly if
instead of cardioid elements omnidirectional microphones are
used as in Fig. 6.

Fig. 6: Microphone array azimuthal response with
omnidirectional elements.

This implies that the spatial filter has to be designed taking
into account frequency dependencies. This will lead to an
implementation of a set of narrow band beam formers centered
at the frequency bins of the FFT.

B. Beam Forming

As the speech signal has a certain bandwidth, a straight
forward beam former cannot be applied to it. In order to deal
with this problem, a set of beam formers are designed for
each frequency bin of the FFT of the noisy signal.
The Zero Forcing (ZF) and Minimum Variance Distortionless
Response (MVDR) beam formers are implemented to
compare their performance under the assumption of one
speech source and one noise source at known angles (or its
angular separation) plus extra noise (i.e thermal noise or/and
ambient noise).

The beam formers W are given by the following expressions
(under complete knowledge of the array manifold A)

Zero Forcing

Wk = (A†Φ,k)H



where AΦ,k is the array response for direction
Φ = [θs, θn] at frequency bin k and A† represents
the Moore-Penrose pseudoinverse of A.

MVDR

wk = R−1
Y Y,kaθs(aHθsR−1

Y Y,kaθs)
−1

where RY Y,k is the covariance matrix of the FFT
coefficients at frequency bin k.

The main problem with ZF is the fact that the angles of the
sources should be known in order to create the matrix AΦ,k.
In contrast, MVDR only requires knowledge of the direction
of the speech source. However, MVDR needs to compute a
covariance matrix which has to be estimated as it is not known
a priori. In addition, if the process is not stationary (as in most
of the cases) techniques to follow the changes in the covariance
matrix should be implemented.
Both beam formers are implemented as described before
considering knowledge of the positions of both source and
noise, its output is then propagated towards the SCNR module
for further processing. Particularly for MVDR, the covariance
matrix is estimated using a sliding window large enough to
obtain an invertible matrix.

Fig. 7: ZF Beamforming response for each of the columns of
W

In Fig 7 the array response after the application of the
ZF beam former is shown. In this example each of the
columns stirs a null to one of the directions θ = [120o,−300]
respectively. It should be noticed that the spreading in the
response present in Fig. 5 is not seen anymore.

C. Results

In order to evaluate the performance of the addition of a
spatial filtering stage to our project, the same instrumental
distortion measures are used. The result of this test are shown
in Tables II, III and IV.

SEG-SNR
BeamFormer Wiener DD TCS

ZF 3.9955 3.0445 -0.2494
MVDR -1.4698 -1.8084 -1.1826

TABLE II: SEG-SNR for the different BeamFormers

STOI
BeamFormer Wiener DD TCS

ZF 0.8280 0.8186 0.8280
MVDR 0.6659 0.6646 0.6659

TABLE III: STOI for different BeamFormers

PESQ
BeamFormer Wiener DD TCS

ZF 2.4400 2.4213 2.4400
MVDR 1.7657 1.7538 1.7657

TABLE IV: PESQ for different BeamFormers

From the tables it is seen that the addition of the beamformer
improves SEG-SNR and PESQ measurements, compare with
the results presented in Table I. When STOI is measured
after the beamformer is applied, a considerable increase in
intelligibility is forecast by the metric, specially in the case
of ZF. In order to obtain proper results from any of these
measures, the maximum correlation lag has to be obtained,
otherwise wrong measures are delivered.

Fig. 8: Comparison of the Spectogram from the Output of
the two used Beamformers and the Channel 1 of the system

In addition to these measures, for the sake of visual under-
standing, in Fig. 8 and 9 the spectograms and time-domain
output of the beamformers are shown. From Fig. 8 it can be
seen that the spectogram becomes blurrier but at the same time
the structure of the speech is reinforced and better defined.
In Fig. 9 the beamformed output shows a huge reduction
in noise and almost perfectly match the speech signal shape
(microphone noise and contributions from other directions are
present).



Fig. 9: Time Domain output for the Zero Forcing
Beamforming

V. ADAPTATIVE BEAMFORMING: FEEDBACK LOOP

One of the main problems while doing beamforming,
particularly using MVDR, is the estimation of the covariance
matrix. As discussed before, the covariance matrix (or its
inverse) has to be estimated by means of a sliding window
and a smoothing temporal filter. Due to the fact that speech
and noise are not stationary in general, the estimation process
of this matrix will be degraded.
In order to overcome this issue, the idea of adding feedback
from the SCNR module towards the MVDR beam forming is
proposed. As enough effort is already made to estimate the
residual noise present in the single channel signal, the authors
proposed to use knowledge of both estimated speech and
noise PSD in order to improve the beamforming, updating
online the covariance matrix with this information.

Lets consider the following signal model in the frequency
domain for two sources S and N and two microphones:

X1,k = Sk +Nk
X2,k = αk(θs)Sk + α(θn)Nk

where αk(θ) := exp(−jkτ(θ) is the related phase shift for
the frequency k.

Now, the data model can be compactly written as

Xk = Ak,ΦIk

where Ik is a vector containing the sources at frequency k
and Ak,Φ contains the array response for the frequency k and
directions Φ = [θs θn].

The covariance matrix for the measurements Xk is then
given by

RXX,k =[
σ2
s,k + σ2

n,k αk(θs)
∗σ2
s,k + αk(θn)∗σ2

n,k

αk(θs)σ
2
s,k + αk(θn)σ2

n,k σ2
s,k + σ2

n,k

]
and by assuming independence between speech and noise FFT
coefficients

RXX,k = RSS,k + RNN,k

with

RNN,k =

[
σ2
n,k αk(θn)∗σ2

n,k

αk(θn)σ2
n,k σ2

n,k

]
Now, it is possible to exploit the information retrieved

from the SCNR module in order to estimate and update the
noise covariance matrix online, to then use it for the MVDR
beamformer.

Recalling from the output of the MVDR beam former

Zk = Sk + wHk [1, αk(θn)]TNk
Zk = Sk + nk

where nk is the residual noise present after the beam former
is applied, which is nothing more than a scaled version of Nk.

Under the assumption of additive noise, the SCNR mod-
ule computes an estimate |n̂k|2 (through the SPP approach
described before), which implies that

|N̂k|2 =
|n̂k|2

|w(0)
k + w

(1)
k αk(θn)|2

Finally, the parameter σ2
n,k can be taken to be our

compensated estimate |N̂k|2 by using the angle at which the
null is of the array is going to be stirred. However, if this
angle is not known an estimate for αk(θn) should be made.
For this matter a proposed estimate, if no more information
is available, could be the mean angular response of the array
at the given frequency k.

The objective measures of the feedbacked MVDR beam-
former are shown in Table V.

SEG-SNR STOI PESQ
Wiener -0.3723 0.6222 1.9630

DD -0.7083 0.6176 1.9491
TCS -0.5475 0.6222 1.9630

TABLE V: Evaluation measures results from Adaptative
MVDR

Comparing these values with the ones from the tables in
the previous section, an increase in the SEG-SNR and PESQ
while a reduction in predicted intelligibility due to lower
STOI can be observed. In the subjective evaluation it was
found that even though the result presents a clearer speech,
new artifacts appear which are considered bothersome. A
similar situation as with musical noise, now the output of the
system gives a speech signal polluted with a kind of electrical
noise, chirp-like sounds. This problem makes the listening
process annoying for some of the listeners, hence reducing
its pleasantness.

VI. CONCLUSION

In this report we discussed the design of a single chan-
nel noise reduction system consisting of different processing
blocks (e.g. gain, noise estimation etc.). Three methods of
speech PSD estimation were discussed and a comparison was



made. From the evaluation we’ve seen that the TCS method
has best performance. From listening tests done by the authors
we conclude that the output of the model with TCS is most
pleasant. The last part of the report consists of the evaluation
of the beamformer with an array of two microphones. In
the evaluation we’ve seen that the zero-forcing beamformer
has best performance. We tried to improve the results of the
MVDR beamformer by making it adaptive. An improvement
of PESQ score was observed but eventually the pleasantness
(and seg-SNR + STOI score) degraded.
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